Identification: “Operation modes and Power Quality assessment of photovoltaic micro-inverters”
Aims :
Study the behavior of photovoltaic micro-inverters (power rating from 250W to 500W)
These kind of inverter is used to interconnect one or two photovoltaic panels.
The objectives of this study is to test micro-inverters from different manufacturers in both the normal and degraded modes of operation.
This work has been focused on the limits of normal operation and Power Quality studies.
Period: from 2016 to 2017
Sponsors:
Context: Micro-inverter is the youngest solar inverter technology. The main argument in favor of the use of micro-inverters is that their connection is easy and allows to have “plug & play” PV modules. Also, the growth of this market is based on the capacity of low skilled workers to realize PV installations. Moreover, the number of micro-inverter manufacturers is rising since the last three years. Thus, it is difficult to compare the product among themselves.
Main results:
Develop a PV micro-inverter test bench
Results comparison to manufacturer data
power measurements at 10%,20%,30%,50% and 100% of the rated Power
Efficiency and EU efficiency computations
Minimum and maximum AC voltage protection testing
Minimum and maximum frequency protection testing
Islanded mode operation on a RLC load
To check the micro-inverter behavior during power quality studies in the case of harmonic voltages in the AC grid. Power quality measurements like:
Partners:
Partner n ° 1 (Pilot): Laboratoire L2EP in Lille / Arts et Métiers ParisTech – Lille, 8 Boulevard Louis XIV – 59000 LILLE (France)
Partner n ° 2: Laboratoire L2EP in Lille / Ecole centrale de Lille, Cité Scientifique, 59651 Villeneuve-d’Ascq
Identification: “Power amplifier for ultra-fastAC/AC conversion”
Context:
To insure the security and reliability a complex and wide coverage tests must be carried out during the whole life-cycle of the products in such industries as power production, aviation, electrical vehicles and railways. The power hardware in the loop or HIL simulation is more and more used to reduce testing costs and protect the real hardware from faulty controllers and in faulty condition tests. The electrical power systems such as drives and converters have a very fast dynamic and cannot be emulated using classical HIL equipment. The IRIS and PLUTON projects aims to develop new power hardware in the loop by exploiting new power converter topologies coupled with the Field Programmable Gate Arrays (FPGA) computing capability for drastically decreasing the simulation time steps allowing the real time simulation of the electrical power systems.
Aims:
Development of ultra-fast AC/AC conversion power amplifier for Powerhardware in the loop applications.
Coupling this power amplifier and the IRIS solver.
Lasting: since February 2017
Partners:
Partner n ° 1: L2EP, EPMLab
Address: 8, Boulevard Louis XIV – 59000 LILLE (France)
The Integration of Real time simulation on FPGA components or IRIS project is the joint effort of EPM laboratory and SPHEREA Test and Service company aimed to develop a new real time simulation system for power electronics and electrical machines based on a custom fast computational hardware implemented in Field Programmable Gate Arrays.
The product testing and maintenance is an important part of its life cycle in the industries with high security and quality demands such as aerospace, transportation or energy production. It allows reducing the risks of accidents, prevents financial losses due to systems failures in energy production and to increase safety. The testing can be very costly for big and complex systems such as an airplane or an electrical station but, although necessary, it can be replaced by a real time simulation at the first stage of the controllers and subsystems verification. In some cases, the testing on the real hardware can be even impossible if a response to faulty conditions is to be checked. The hardware in the loop simulation allows carrying out integral tests of the control systems and independent subsystems without connecting to the actual real-world equipment to greatly reduce the costs and damage risks.
The conventional HIL simulation systems doesn’t allow real time simulation of systems with very fats dynamics such as electrical power systems and machines. The IRIS project is centered around solving the dynamics equation of electrical systems and its acceleration with FPGA/System on Chip. Currently it includes the solvers for generic linear electrical systems based and power electronics the augmented nodal method, and synchronous electrical machines based on state space modeling, but additional type of solvers are planned to be developed. For both these methods a lot of computational power is required if fast real time dynamics simulation is to be achieved. Form the other point of view, the real-time simulation requirements impose the constraints on the loopback response latency.
To respect these constraints the IRIS project uses hardware computation acceleration and input outputs control base on FPGAs – electronic components allowing to build reconfigurable digital logic circuits. Compared to conventional microprocessors they provide much larger flexibility and optimization of computation pipelines and compared to such devices as GPU they allow hard real time determinism insuring that a proper signal will be sent in the proper place and at the correct time which is very important for the communication with tested equipment and controllers.
The IRIS simulation system has a modular architecture with asynchronous simulation modules designed for the specific electrical system simulation. The simulation modules are controlled and configured from the system on chip with an ARM core which is also used for host PC communication. This allows online configuration and reconfiguration on the fly to treat non-linearities and slow dynamics that can also be simulated on software part.
The solvers developed in the IRIS project can be used for simulation of electrical power systems for the first stage testing and verification. It can be applied for testing and verification of power production, onboard power grids, electric propulsion and mechatronics in aerospace, automotive, railroad and power production industries. If you are interested in getting more information about the IRIS project or how you can apply it to solve your tasks, feel free to contact us at the contact information given below.
Partners:
L2EP, EPMLab
SPHEREA Test and Service
5 Avenue Georges Guynemer CS70086 31772 Colomiers Cedex, France
Identification: “Multi-Terminal DC grid mock-up for off-shore energy production”
Description:
Main Topic : control of MTDC grids
Aims: DC voltage and AC frequency control
The growth of offshore wind farms and their geographical dispersion will perhaps lead to a multi-terminal DC (MTDC) configuration. The control strategies of DC system should consider both DC voltage constraints and frequency support of interconnected AC grids.
In the different stages of development for technological applications, the low scale demonstrator is a very important validation phase after the theoretical simulation analysis and prior to first prototypes or industrial installations. In terms of development of MTDC grids, it could still last for many years before getting the first on-site high voltage demonstrator, mainly due to the huge costs involved in such projects and to their impact on the operation of exiting grids. Therefore, the mock-up developed in TWENTIES demo3 provides an interesting intermediate and flexible step between simulations and on site demonstrator by mixing reduced power DC links and real-time simulation to develop an actual low power MTDC grid. This DC grid can be interconnected to a virtual AC power system.
Sponsor:
RTE
Main results:
Validation of dual droop control technique on three terminal configuration
Validation of MPC control
Partners:
Partner n ° 1 (Pilot): Laboratoire L2EP in Lille / Arts et Métiers ParisTech – Lille – Address : 8, Boulevard Louis XIV – 59000 LILLE (France)
Partner n ° 2 : Laboratoire L2EP in Lille / Ecole centrale de Lille – Address: Cité Scientifique, 59651 Villeneuve-d’Ascq (France)
Partner n ° 3 : RTE-France – Address: CNER / Département Postes, Cœur Défense 100, Esplanade Charles de Gaulle F-92932 Paris La Défense (France)
Identification: “Dynamic Modelling of a multi-energy grid for the setting-up of a new district named “ZacSaint Sauveur” in the city of Lille”
Aims:
Improve the Energy exchange between different type of grids ( heat, gas and Electricity, …)
Develop real time models of renewable sources and storage systems to cover the major part of the consumption on this district
Integrate consumptions of new buildings following “Energy+ & Carbon-“rules.
Help the MEL and his partners to improve the construction of the new district.
Work in interaction with a many partners to co-elaborate this new district
Lasting: from September 2016 to September 2018 (24 months)
Supporters: The European Metropolis of Lille (the MEL) and Funding “EcoCités”
Context: European Environmental rules “3 X 20“ and the French Energy transition’s laws
Main results in progress:
About 24 GWh per year of energy mix in 2030
Development of Locals Renewables Energies sources and storages: CHP, Photovoltaics, solar thermal system , Management of electrical vehicles refilling, New district heating loops
Best-case Scenarios thought to bring reduction of greenhouse gas and cost of kWh.
Simulations (hourly time) during 2 representative weeks: one in summer and one in winter following the construction planning.
Mix of the 3 different energy grids to decrease GhG[1] effects
Partners, Collaborative project with 7 organizations
MEL : Métropole Européenne de Lille
Ville de Lille
GRDF
Enedis
Résonor
Arts et Métiers ParisTech
[1] Greenhouse Gases : gases who have an effect on the Environment
The Electrical Power Management Lab (EPMLab) is a collaborative environment dedicated to innovative experimentations in the field of smart power system. This environment is articulated around a real-time simulator which is specifically used to emulate a power system behavior. It allows to address different kind of topics: smart-grid, Transmission system with large penetration of power electronic converters and also some Hardware tests based on PHIL principle. It includes various production units, storage systems, power electronic based connection interfaces or loads like a MMC, back-to-back grid connected power electronic converters, a photovoltaic power plant (18 kW), a cogeneration system, super capacitors as well as static or dynamic emulation devices of different kinds.
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsACCEPT
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are as essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.