Description:

The Integration of Real time simulation on FPGA components or IRIS project is the joint effort of EPM laboratory and SPHEREA Test and Service company aimed to develop a new real time simulation system for power electronics and electrical machines based on a custom fast computational hardware implemented in Field Programmable Gate Arrays.

The product testing and maintenance is an important part of its life cycle in the industries with high security and quality demands such as aerospace, transportation or energy production. It allows reducing the risks of accidents, prevents financial losses due to systems failures in energy production and to increase safety. The testing can be very costly for big and complex systems such as an airplane or an electrical station but, although necessary, it can be replaced by a real time simulation at the first stage of the controllers and subsystems verification. In some cases, the testing on the real hardware can be even impossible if a response to faulty conditions is to be checked. The hardware in the loop simulation allows carrying out integral tests of the control systems and independent subsystems without connecting to the actual real-world equipment to greatly reduce the costs and damage risks.

The conventional HIL simulation systems doesn’t allow real time simulation of systems with very fats dynamics such as electrical power systems and machines. The IRIS project is centered around solving the dynamics equation of electrical systems and its acceleration with FPGA/System on Chip. Currently it includes the solvers for generic linear electrical systems based and power electronics the augmented nodal method, and synchronous electrical machines based on state space modeling, but additional type of solvers are planned to be developed. For both these methods a lot of computational power is required if fast real time dynamics simulation is to be achieved. Form the other point of view, the real-time simulation requirements impose the constraints on the loopback response latency. 

To respect these constraints the IRIS project uses hardware computation acceleration and input outputs control base on FPGAs – electronic components allowing to build reconfigurable digital logic circuits. Compared to conventional microprocessors they provide much larger flexibility and optimization of computation pipelines and compared to such devices as GPU they allow hard real time determinism insuring that a proper signal will be sent in the proper place and at the correct time which is very important for the communication with tested equipment and controllers. 

The IRIS simulation system has a modular architecture with asynchronous simulation modules designed for the specific electrical system simulation. The simulation modules are controlled and configured from the system on chip with an ARM core which is also used for host PC communication. This allows online configuration and reconfiguration on the fly to treat non-linearities and slow dynamics that can also be simulated on software part. 

The solvers developed in the IRIS project can be used for simulation of electrical power systems for the first stage testing and verification. It can be applied for testing and verification of power production, onboard power grids, electric propulsion and mechatronics in aerospace, automotive, railroad and power production industries. If you are interested in getting more information about the IRIS project or how you can apply it to solve your tasks, feel free to contact us at the contact information given below.

Partners:

  • L2EP, EPMLab
  • SPHEREA Test and Service
    • 5 Avenue Georges Guynemer CS70086 31772 Colomiers Cedex, France


0 Comments

Leave a Reply

Your email address will not be published. Required fields are marked *